"When high-energy cosmic particles strike the top of Earth’s atmosphere, they produce showers of “daughter” particles that will find their way down to Earth. On the surface, we’ve built several notable detector arrays, including the Pierre Auger Observatory and the Large High Altitude Air Shower Observatory (LHAASO), to reconstruct the energy and direction of the initial cosmic ray that struck the Earth." (BigThink, The simplest explanation for ultra-high-energy cosmic rays)
The ultra-high-energy particles are mysterious. But sometimes the best explanation is the simplest. When a particle travels in the universe, it faces many energy fields and other particles. Whenever those particles travel through the higher-power energy field, they transfer energy to the particle that travels through them. This means the reason for the ultra-high energy photons and other particles is that.
"Any cosmic particle that travels through the Universe, regardless of speed or energy, must contend with the existence of the particles left over from the Big Bang. While we normally focus on the normal matter that exists, made of protons, neutrons, and electrons, they are outnumbered more than a billion-to-one by the remnant photons and neutrinos/antineutrinos. When a charged particle travels through the intergalactic medium, regardless of how it’s produced, it cannot ignore the “bath” of photons it will experience along its journey." (BigThink, The simplest explanation for ultra-high-energy cosmic rays)
Those particles traveled through extremely high-power energy fields, such as those. Found in black hole jets. In the same way. Things. Like gravitational lenses transmit energy to those particles. In the same way. When particles. Like electrons impact a photon, they load energy into the photon.
A photonic ray. It can accelerate electrons. But in the same way, when an electron impacts a photon, that electron transfers energy into that photon. The photon also reflects from the incoming electron, and that impact. Stretches a photon into gamma-rays. The gamma-ray systems can be the next-generation tool in inspection.
"Particles traveling near light speed can interact with starlight and boost it to gamma-ray energies. This animation shows the process, known as inverse Compton scattering. When light ranging from microwave to ultraviolet wavelengths collides with a fast-moving particle, the interaction boosts it to gamma rays, the most energetic form of light. This type of interaction, between photons and energetic charged particles, will also serve to slow down (or brake) the charged particle’s motion." (BigThink, The simplest explanation for ultra-high-energy cosmic rays)
Today. Those gamma rays are produced by using radioactive material. The radioactive material. It is a dangerous tool. In the wrong hands. And the particle accelerators that use laser beams. That impact with electrons can be an answer. The gamma-ray systems can open the atomic structures. In new ways. For reseachers.
These kinds of reactions and interactions affect in the same way. To a photon, and because an electron’s mass is much higher, that thing can turn a photon’s wavelength into gamma rays. When. Laser rays are shot against electron beams. Those things can be used to create synthetic gamma-rays. The high-energy reactions can open a new route to high-energy solutions.
"Cosmic rays, which are ultra-high energy particles originating from all over the Universe, including particles emanating from the Sun, strike atomic nuclei everywhere they exist. On Earth, they land in the upper atmosphere and produce showers of new particles, but on the Moon, they recoil off of the heavy atomic nuclei present on the airless Moon’s surface." (BigThink, The simplest explanation for ultra-high-energy cosmic rays)
The photon is the only particle that doesn’t cause annihilation when it impacts antimatter.
Particle collisions between photons can also explain dark energy. The fact is that all particles in the universe react to photons. The interactions between photons and electrons can accelerate electrons to incredible speeds. The laser systems that accelerate electrons in the particle accelerators can open new paths into physics.
The laser beam can travel across the cathode beam and push electrons into the accelerator tube. Those accelerators can be far smaller, and their energy level can be higher than that of particle accelerators. Those are in use. The photon beam can be used to control things. Like. Antimatter particles. The photon beam can be used to create antimatter systems. Like. Antimatter rockets. The laser beam that drives antimatter particles to the rocket chamber uses particles that don’t interact with antimatter.


























